Evolutionary Policy Transfer and Search Methods for Boosting Behavior Quality: RoboCup Keep-Away Case Study

نویسندگان

  • Geoff S. Nitschke
  • Sabre Didi
چکیده

This study evaluates various evolutionary search methods to direct neural controller evolution in company with policy (behavior) transfer across increasingly complex collective robotic (RoboCup keep-away) tasks. Robot behaviors are first evolved in a source task and then transferred for further evolution to more complex target tasks. Evolutionary search methods tested include objective-based search (fitness function), behavioral and genotypic diversity maintenance, and hybrids of such diversity maintenance and objective-based search. Evolved behavior quality is evaluated according to effectiveness and efficiency. Effectiveness is the average task performance of transferred and evolved behaviors, where task performance is the average time the ball is controlled by a keeper team. Efficiency is the average number of generations taken for the fittest evolved behaviors to reach a minimum task performance threshold given policy transfer. Results indicate that policy transfer coupled with hybridized evolution (behavioral diversity maintenance and objective-based search) addresses the bootstrapping problem for increasingly complex keep-away tasks. That is, this hybrid method (coupled with policy transfer) evolves behaviors that could not otherwise be evolved. Also, this hybrid evolutionary search was demonstrated as consistently evolving topologically simple neural controllers that elicited high-quality behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-Evolution for Multi-Agent Policy Transfer in RoboCup Keep-Away: (Extended Abstract)

An objective of transfer learning is to improve and speedup learning on target tasks after training on a different, but related source tasks. This research is a study of comparative Neuro-Evolution (NE) methods for transferring evolved multi-agent policies (behaviors) between multi-agent tasks of varying complexity. The efficacy of five variants of two NE methods are compared for multi-agent po...

متن کامل

Neuro-Evolution for Multi-Agent Policy Transfer in RoboCup Keep-Away

An objective of transfer learning is to improve and speedup learning on target tasks after training on a different, but related source tasks. This research is a study of comparative Neuro-Evolution (NE) methods for transferring evolved multi-agent policies (behaviors) between multi-agent tasks of varying complexity. The efficacy of five variants of two NE methods are compared for multi-agent po...

متن کامل

Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study

We present half field offense, a novel subtask of RoboCup simulated soccer, and pose it as a problem for reinforcement learning. In this task, an offense team attempts to outplay a defense team in order to shoot goals. Half field offense extends keepaway [11], a simpler subtask of RoboCup soccer in which one team must try to keep possession of the ball within a small rectangular region, and awa...

متن کامل

Approaches of Gentrification Model to Gentrify and Rehabilitate Urban Old Context

The present paper is a case study on one of the old areas in the city of Ardabil with an approach of gentrification model to gentrify and rehabilitate the old urban context. Besides the library studies, this study includes local observations and questionnaires which deal with the opinions of residents on the problems and shortcomings. It also includes the ways of satisfying the residents to kee...

متن کامل

Policy Search in Continuous Action Domains: an Overview

Continuous action policy search, the search for efficient policies in continuous control tasks, is currently the focus of intensive research driven both by the recent success of deep reinforcement learning algorithms and by the emergence of competitors based on evolutionary algorithms. In this paper, we present a broad survey of policy search methods, incorporating into a common big picture the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Front. Robotics and AI

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017